

Silicon strip detector upgrade (SVX II)

Fabrication of the SVX-II detector

Doug Benjamin

SVX II detector description

End view of SVX II barrel (3 barrels in detector)

SVX-II Ladders

Duke task: Ladder construction

- ➤ Needed to build 180 ladders (excluding spares)
- ➤ 36 of each layer
- > 5 layers

R-phi side of a completed Quarter ladder

——— Alignment piece

Readout chips

Jumper (interconection btwn r-phi & z sides)

Silicon sensor

 1st time can readout silicon sensor

Close up of wire bond pad and foot

Strip pitch - 66 µm

Fiducial mark (triangle)

15 μm (each side)

R-phi side layer 4 prototype ladder

Quarter ladder

SVX II Ladder Construction

- Doug Benjamin led the ladder production effort
 - ➤ Supervised technicians building ladders
 - worked w/ designers and engineers to design and build the production fixturing
 - had the *Ultimate responsibility* for the quality of the ladders
- Construction was done primarily done at FNAL's Silicon Detector Center.
 - 23 layer 3 quarter ladders were built in Japan (28% of all L3 QL built)
 - last May traveled to Japan to review and certify quarter ladder assembly at Hamamatsu Photonics
 - Provided the final training of our Japanese colleagues in ladder testing
- Built most (94 %) of the quarter ladders and all full ladders at FNAL

SVX-II Assembly Sequence

- Build quarter ladders (1 silicon sensor)
- Test quarter ladders
- Assemble pieces for full ladders
 - 2 quarter ladders (one at each end)
 - ➤ 2 intermediate pieces of silicon
- Align the 4 pieces of silicon to each other
- Test full ladder
- Store till barrel assembly

Full ladder silicon alignment

SVX-II must be parallel to beam line to within 100 μrad é sensor alignment spec. of ± 8μm

Maximum deviation from a straight line for all SVX-II ladders

Quarter and Full ladder assembly totals

1/4 ladders	Layer 0	Layer 1	Layer 2	Layer 3	Layer 4
prototyping	23	12	8	14	7
Production					
Starts	95	95	87	85	91
Damaged	10	10	4	3	6
good	85	85	83	82	85
in Barrels	72	72	72	72	72
Spares	13	10	4	3	6

Full					
Ladders	Layer 0	Layer 1	Layer 2	Layer 3	Layer 4
prototyping	3	3	2	2	2
Production					
Starts	42	43	42	41	43
Damaged	2	2	1	2	5
good	40	41	41	39	38
in Barrels	36	36	36	36	36
Spares	4	5	5	3	2

Bad Channel % Ladders with Hamamatsu sensors

Phi side defects (% of bad channels)

Bad Channel % Ladders with Micron sensors

Phi side defects (% of bad channels)

SVX II Ladder production

9/26/00 (DOE site visit)

Doug Benjamin

SVX-II Full ladder Assembly Rate

Finished 4 days ahead of schedule

Conclusions

- SVX II was an exciting and challenging project
- Duke had crucial roles in this upgrade
- Will bring our expertise developed during the construction SVX-II to the off-line work on the silicon tracker (L00, SVX-II and ISL) during run 2a
- Will contribute significantly to run 2b silicon track
- Augments the existing Duke work on other CDF tracking detectors (COT)

Run 2a Silicon activities at Duke

- Maintain control and monitoring of silicon power supply systems (w/ Rochester)
- Implement silicon tracker in new simulation framework
 - Study charge deposition models
 - ➤ Tune simulation with data when possible
- Validation of silicon detector simulation
 - track efficiency studies for various environments (b-jets,c-jets,light quark jets)
 - Determine where inefficiencies arise
- Validation of silicon detector tracking
 - Using data processed with production program
 - Could be extended to online study of silicon data quality

Run 2a Silicon activities at Duke (cont.)

- Eventually use expertise to understand heavy flavor tagging efficiencies
 - Ties in with our run 2 physics goals: Higgs, top studies and new physics
- This work will be extended to help in the design considerations for run 2b silicon tracker (more – Mark Kruse's talk)
- 3 people will work on this
 - ➤ Doug Benjamin (½ FTE)

 (DB in discussions with CDF Operations group about being an operations manager for run2a)
 - Mark Kruse (½ FTE)
 - ➤ New PostDoc (1 FTE)